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A navigation process is studied on a variant of the Watts-Strogatz small-world network model embedded on
a square lattice. With probability p, each vertex sends out a long-range link, and the probability of the other end
of this link falling on a vertex at lattice distance r away decays as r−�. Vertices on the network have knowledge
of only their nearest neighbors. In a navigation process, messages are forwarded to a designated target. For
��3 and ��2, a scaling relation is found between the average actual path length and pL, where L is the
average length of the additional long range links. Given pL�1, a dynamic small world effect is observed, and
the behavior of the scaling function at large enough pL is obtained. At �=2 and 3, this kind of scaling breaks
down, and different functions of the average actual path length are obtained. For ��3, the average actual path
length is nearly linear with network size.
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I. INTRODUCTION

The famous experiment of messages being forwarded to a
target among a group of people, carried out by Milgram �1�
in the 1960s, and also by Dodds et al. in 2003 �2� on a larger
scale, reveals the existence of short paths between pairs of
distant vertices in networks that appear to be regular �i.e., the
small-world effect �1,3–6��. One of the important quantities
that characterize this small-world effect is the average short-
est path length �d� between two vertices. On small-world
networks, this value grows very slowly �relative to the case
of a fully regular network� with the network size N. Recent
empirical research has shown that a great variety of natural
and artificial networks with their structure dominated by
regularity are actually small worlds, and their average path
lengths grow as ln N �7�, or more slowly. �See Ref. �8� for
more reviews.�

An alternative issue revealed by experiments, but less ob-
vious, is about the realistic process of passing information on
small-world networks. This kind of information navigation
has been studied by Kleinberg �9�. This process goes dy-
namically: When a message is to be sent to a designated
target, each individual forwards the message to one of its
nearest neighbors �connected either by a regular link or a
shortcut� based on its limited information. Without informa-
tion of the whole network structure, this actual path is usu-
ally longer than the shortest one given by the topological

structure. While �d� is the average shortest path length, the
average actual path length �l� is the average number of steps
required to pass messages between randomly chosen vertex
pairs. As �d� is usually referred to as the diameter of the
system, in the rest of this paper �l� shall be taken as the
effective diameter, and �d�� �l�. It has been noted that the
topology of the network may significantly affect the behavior
of �l� �4,9–12�. In other words, it may determine the effi-
ciency of passing information.

Based on Milgram’s experiment, Kleinberg studied the
navigation process on a variant of the Watts-Strogatz �W-S�
small-world model �3� on an N�N open regular square lat-
tice. Each vertex sends out a long range link with probability
p, and the probability of the other end falling on a vertex at
Euclidean distance re away decays as re

−�. Kleinberg studied
�l� when each vertex sends out one long-range link and
proved a lower bound of �lp=1�=cN����. When �=0, the
long-range links are uniform, and �l�=0,p=1��N2/3 was ob-
tained. de Moura et al. �11� studied �l� on the D-dimensional
W-S model, with �=0 and varying p, and obtained
�l�=0,p=1��N1/�D+1�, and thus �l�=0,p=1��N1/3 in the two-
dimensional case. In the more recent work of Zhu et al. �10�
on the one-dimensional case, the variance of �l�,p� with both
� and p was studied, and scaling relations were shown to
exist. For the studies of the searching processes on other
different networks, see Refs. �4,13�.

In this paper, we systematically investigate the navigation
process on a two-dimensional variant of the W-S network
model �3,14�. We study the behavior of �l� by first working
out the scaling relations in the two-dimensional case. Our
result also provides new understanding of the scaling analy-
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sis in Ref. �10�. In Sec. II, the model used here is constructed
and the navigation process is described, and then the average
actual path length �l� is obtained with some approximation
based on a rigorous treatment. Following that, in Sec. III, the
dependence of �l� on N, �, and p are presented based on
scaling relations. Special attention is paid to the cases stud-
ied in the works of Kleinberg �9� and de Moura �11�. Our
summary and discussions can be found in Sec. IV.

II. THE CONSTRUCTION OF THE NAVIGATION MODEL

Our model starts from a N�N two-dimensional square
lattice. With periodic boundary condition, the lattice distance
between two vertices �x ,y� and �x� ,y�� can be written in a
two-dimensional fashion as

r�x,y�,�x�,y�� = 	x + 	y, 	x = N/2 − ��x − x�� − N/2�,

	y = N/2 − ��y − y � � − N/2� . �1�

This value is actually the length of the shortest path connect-
ing these two vertices through only regular links. To generate
a small world, with probability p �0� p�1� each vertex
sends out an additional link to another vertex �excluding its
original nearest neighbors� �18�. If this other vertex is se-
lected at random, then we are creating a small-world network
with random shortcuts. Based on realistic considerations �for
example, people tend to be brought together by similar inter-
est, occupation, etc.�, we shall add the shortcuts in a biased
manner �9,14�: If the shortcut starts from vertex i�xi ,yi�, the
probability that vertex j�xj ,yj� is selected as the end depends
on the lattice distance between them in the following way,

P�r�x,y�,�x�,y��� =
1

A
r�x,y�,�x�,y��

−� ,

where � is a positive exponent and

A = �
�x�,y����x,y�,�x±1,y�,�x,y±1�

r�x,y�,�x�,y��
−�

is the normalization factor.
In the model described above, the navigation process can

be simulated with the so-called “greedy” algorithm �9�:
Without loss of generality, suppose the target is vertex �0,0�.
At each step, the current message holder, vertex n�xn ,yn�,
passes the message through one of its regular or long-range
links. Based on its limited local information, this link is be-
lieved to bring the message the closest to the target. Based on
this algorithm, the actual path length �l�xn ,yn�� can be ob-
tained after taking an ensemble average over all possible
realizations of the network �with a set of fixed parameters, p,
N, �, etc.�.

In the simplest case, we suppose that each vertex has
information of only the vertices that can be reached within
one step, and do the calculation as the following: �1� If the
current message holder is vertex �0,1�, we simply have

�l�0,1�� = 1. �2�

It is the same for the other nearest neighbors of the target
�0,−1�, �1,0�, and �−1,0�. �2� There are eight nodes with

lattice distance 2 from the target: �0, ±2�, �±2,0�, �±1, ±1�,
and �
1, ±1�. If the current message holder is, for example,
�0,2�, then with probability

W�0,2�→�0,0� = 1 − 	1 − p
2−�

A

2

,

it is directly linked to the target via one shortcut, which
means the message is sent directly to the target with this
probability. On the other hand, the probability that the mes-
sage is forwarded along a regular bond is

Wreg = 1 − W�0,2�→�0,0�.

Thus

�l�0,2�� = 1 � W�0,2�→�0,0� + 2 � Wreg. �3�

The calculation is the same for the other seven nodes men-
tioned above. �3� In a general case, the message is held by
vertex �x ,y�. W�x,y�→�x�,y�� denotes the probability that the
message is forwarded in the next step to a vertex �x� ,y��,
which must be nearer to the target than �x ,y� by at least
lattice distance 2. If the message holder is not able to find a
shortcut, the message will be forwarded along a regular link
with probability

Wreg = 1 − �
�x�,y��

W�x,y�→�x�,y��. �4�

For example, if the vertex �3,2� passes the message through a
regular link, it will randomly choose �2,2� or �3,1�, which in
the following will be denoted by �xreg ,yreg�.

Now, with this set of probabilities W, we obtain

�l�x,y�� = W�x,y�→�0,0� + �
�x�,y��

W�x,y�→�x�,y���1 + �l�x�,y����

+ Wreg�1 + �l�xreg,yreg��� . �5�

Considering that p /A is a relatively small quantity,
W�x,y�→�x�,y�� can be expressed as �10�

W�x,y�→�x�,y�� = 2p
r�x,y�,�x�,y��

−�

A
, �6�

where we have used the fact that r�x,y�,�x�,y��=r�x�,y��,�x,y�. Then
it is an easy task to obtain Wreg from Eq. �4�.

Recall that we have the definition of the average shortest
path length �d�= 1

N2�N2−1��i�jdij, where dij is the length of the

shortest path between vertices i and j. By contrast, the aver-
age actual path length can be defined as

�l� =
1

N2�N2 − 1� �
�x,y���0,0�

�l�x,y�� . �7�

Further, with vertex �0,0� being the target, we group the other
nodes according to their lattice distance from the target, and
in the following we shall also discuss the function �l�n��,
which for each value of n is obtained by averaging all nodes
�x ,y� with r�x,y�,�0,0�=n.
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III. FEATURES OF THE NAVIGATION PROCESS

The average actual path length depends on multiple pa-
rameters. Here we take into consideration varying N, �, and
p, but keep the range of view of each vertex limited to its
nearest neighbors. Our discussion of the navigation process
starts from looking for the basic scaling relations.

A scaling relation is not new in the theories of small-
world effect. Actually, it plays a central role in the current
theoretical framework. In 1999, Newman �15� showed that in
the W-S model with uniform shortcuts the average shortest
path length is a function of pN, and it sharply decreases
when pN becomes larger than 1. Newman noticed that pN is
simply the expected number M of long-range links. The
threshold of small-world behavior is M = pN�1, which
means the network becomes a small world when there is
more than one long-range link. When the model network is
generalized, this interpretation shall be generalized as well.
For example, in a discussion of the scaling relations in the
problem of dynamic navigation, Zhu et al. �10� considered
inhomogeneous long-range links �the probability of linking
two nodes falls when their lattice distance increases�. In their
study, the dynamic small world behavior is switched on
when ML��1, where M is the number of long-range links
and L� is the average reduced link length �the average length
of long range links L divided by the system size�. Although
they focused on different aspects �static and dynamic� of the
small world effect, we can still compare these two versions
of scaling relations. Because in the model studied by
Newman L��1/4, it is consistent with the interpretation of
Zhu et al. Actually, as we shall see below, the interpretation
of Zhu et al. can be developed as well, when a more general
model is considered.

In the Introduction we have defined �l� as the effective
diameter; in the following we will use �l��= �l� /N as the re-
duced effective diameter. If the network is regular, �l�� will
appear as a constant. Bearing this in mind, we first look at
the results shown in Fig. 1. For each value of � �with an
exception at �=2, as will be shown below�, �l�� appears as a
function of pL, where L is the average length of long-range
links. Thus our study clearly supports an interpretation dif-
ferent from that in Ref. �10�: Instead of ML�, the parameter
should be pL. In the one-dimensional case, this equals ML�
and is thus consistent with Ref. �10�. When pL�1,
�l��→0.5 and �l��N, indicating that the network is virtually
regular, and when pL increases beyond 1, the system begins
to show a dynamic small-world behavior.

However, we find interesting exceptions at �=2 and
�=3. As shown in Fig. 2, at �=2, exp��l��� pL� is a linear
function of pL / ln N for pL significantly larger than 1. Due to
this extra factor of 1 / ln N, there is no way that �l�� can be
written as a function of pL for �=2. Because at �=2 the
system shows the shortest �l�, this is certainly a case of spe-
cial interest. It becomes more curious when we notice that in
one dimension there is not such an exception in the scaling
analysis �10�. As shown in Fig. 3, at �=3, �l�� appears as a
function of pL ln N, and the dynamic small-world behavior is
seen when this parameter exceeds 1. There is more discus-
sion of these interesting points later.

Figures 1–3 can give us more information once we get an
idea of L. For N large enough, we can use the following
approximation,

L =

�
0

N/2−1

dx�
1

N/2

�x + y�1−�dy

�
0

N/2−1

dx�
1

N/2

�x + y�−�dy

, �8�

which gives

L =
1 − �

3 − �

�N − 1�3−� − 2�N/2�3−� + 1

�N − 1�2−� − 2�N/2�2−� + 1
�� � 0,1,2,3� ,

�9�

FIG. 1. �Color online� The reduced average actual path length
�l�� varies as pL for �=0,1 ,2.5, where L is the average length of
the additional long range links. The data collapse with each specific
� contains curves with N=200,400,600,800,1000 respectively. On
each curve with fixed N, p=1.3−i, where i=0,1 ,2 , . . . ,47 �p has the
same set of values on each curve in Figs. 2 and 3�. The solid line
y�x−0.309 is a guide to the eye.

FIG. 2. �Color online� With given �=2, plots show the relation
between exp(�l�� · pL) and pL at N=200,400,600,800,1000.
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L�=0 =
1

6

N3 − 2	N

2

3

+ 1

	1

2
N − 1
2 , �10�

L�=1 =
	1

2
N − 1
2

�N − 1�ln�N − 1� − N ln	N

2

 , �11�

L�=2 =

�N − 1�ln�N − 1� − N ln	N

2



2 ln
N

2
− ln�N − 1�

, �12�

and

L�=3 =

2 ln
N

2
− ln�N − 1�

1

2�N − 1�
−

2

N
+

1

2

. �13�

Some comments on this approximation: We have chosen the
upper and lower limits for the integrals with some arbitrari-
ness. For ��3 and for N very large, it gives results good
enough for the later discussion. Surely this approximation
fails for ��3, but in that region what is important is L stays
finite as N goes to infinity.

From Eqs. �9�–�13�, we have for large enough N

L�=0 →
N

2
, �14�

L�=1 →
N

4�ln 2�
, �15�

L =
1 − �

3 − �
·

1 − 2�−2

1 − 2�−1N �0 � � � 1, 1 � � � 2� , �16�

L�=2 → ln 2
N

ln N
, �17�

L → N3−�1 − �

3 − �
· �1 − 2�−2� → 0 �2 � � � 3� , �18�

L�=3 → 2 ln N , �19�

L → finite �� � 3� . �20�

In the above equations, �=0,2 ,3 come out as special
points. �=0 corresponds to the totally random network. Be-
low �c

1=D=2, L0���2 is always proportional to N. In Ref.
�16�, the authors proposed that for 0����c

1 the system is in
the random network phase, and �c

1 is the continuous phase
transition point from the random network phase to the small-
world phase. As � increases above �c

2=D+1=3, L is finite
and independent of N in the limit of N→�. As a result, the
system is virtually a regular network for ���c

2.
Now we have the scaling relations shown in Figs. 1–3 and

L as a function of N given by Eqs. �14�–�20�. In the follow-
ing we shall discuss the system behavior with � starting from
zero.

�1� 0����c
1: As shown in Fig. 1, when pL�1,

�l��→0.5, indicating that the network is virtually regular.
When pL increases beyond 1, the system begins to show a
dynamic small-world behavior, in the sense that

�l�� � �pL�− � p−N− �21�

or

�l� � p−N1−, �22�

where  depends only on �. From the linear fit, at �=0 we
have obtained that 0.309 and �l�� p−0.309N0.691. Note that
 is obtained from the linear fit of limited data and cannot be
exact, but our result, �=1−0.691, is close to Kleinberg’s
result, �=2/3. �We observe that in Ref. �11�, �=1/3.� As �
increases,  increases, but � remains positive as �→�c

1.
With our present results, we are not able to give the full
function of ���, because near �=2, �l� as a function of N
severely deviates from a power law for relatively small N.

�2� �=�c
1=2: At this point, when pL / ln N�1, �l��→0.5,

showing that it is a regular network. When pL / ln N increases
above 1, exp��l��� pL� turns into a linear function of
pL / ln N, and it means

�l�� � ln�pL/ln N�/pL . �23�

With L� ln 2 N
ln N for N→�, this gives

�l� �
ln N�ln p + ln�ln 2� + ln N − 2 ln�ln N��

p ln 2
, �24�

or, in the limit of N→�,

FIG. 3. �Color online� The relationship between �l�� and pL ln N
in log-log scale at �=3 for N=200,400,600,800,1000.
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�l� �
ln N�ln p + ln N�

p
. �25�

We have studied the case of 0����c
1, and the case of

���c
1 will be studied below. We shall see that at �=�c

1 the
smallest �l� is achieved.

�3� �c
1����c

2: Regularity dominates for pL�1. For
pL�1, a dynamic small-world effect arises. Similar to the
case of 0����c

1, we have once again obtained

�l� � p−N1−, �26�

and  tends to zero as � approaches �c
2.

�4� �=�c
2=3: When pL ln N�1, �l��→0.5, the network

also shows dominating regularity. When pL ln N greatly ex-
ceeds 1,

�l�� � �pL ln N�−. �27�

Substitute L�2 ln N into the above equation. Then, for large
enough N, we have

�l� � p−N�ln N�−2, �28�

but the size of the networks used in the present study pre-
vented us from getting an accurate estimate of .

�5� ���c
2: Since in this case L stays finite when N→�,

the system is believed to behave like a regular network. It is
confirmed by the numerical calculation, which gives �l�
nearly linear as N.

IV. SUMMARY AND DISCUSSION

In this work, we investigate the navigation process on a
variant of the Watts-Strogatz �W-S� model embedded in a
two-dimensional square lattice with periodic boundary con-
dition. With probability p, each vertex sends out a long-range
link, and the probability that the other end of this link falls
on a vertex at lattice distance r away decays as r−�. Vertices
on the network have knowledge of only their nearest neigh-
bors. In a navigation process, messages are forwarded to a
designated target, and the average actual path length �l� is
obtained with varying �, p, and N.

Our result is consistent with the existence of two phase
transitions at �c

1=D=2 �random network to small-world net-

work� and �c
2=D+1=3 �small-world network to regular net-

work�. For ���c
2, and ���c

1, it is found that �l����l� /N
� f��pL�, where L is the average length of the additional
long-range links. This develops the scaling analysis in the
works of Newman �15� and Zhu et al. �10�. Given pL�1, a
dynamic small-world effect is observed, and the behavior of
f� at large enough pL gives �l�� p−���N1−���. When �=0, 
is close to 1/3, so �=1−�2/3, in agreement with Klein-
berg’s result of �l��N2/3 for p=1. As � increases,  increases
�but stays below 1�, and once � exceeds �c

1,  begins to
decrease, and  approaches zero as �→�c

2. At �=�c
1, this

kind of scaling breaks down, and �l�� can no longer be writ-
ten as a function of pL. In this case we can still get �l�
� ln N�ln p+ln N� / p for N large enough. Note that only at
�=�c

1, �l� grows as a polynomial of ln N, and it is the closest
point to the static small world effect �10�. At �=�c

2, the
scaling is �l��� f�pL ln N�, and accordingly �l�
� p−N�ln N�−2 with large enough pL ln N. For ���c

2, �l� is
nearly linear with N.

It is reasonable that in social networks �like various other
networks� the probability of connection falls as distance �in
various senses, e.g., occupation� increases, and the appar-
ently very small value of �l� in human society �1,2� suggests
human society might have its exponent � being close to �c

1.
The great success of the idea of small world has since

motivated much effort in studying various dynamic pro-
cesses based on the small-world network model. The limited
knowledge of the nodes of a network is an important limita-
tion that has to be considered when studying navigation pro-
cesses. Another interesting and important limitation is due to
the fact that the links in a network are usually associated
with “weights,” as systematically studied in Ref. �17�. Fur-
ther studies on link-weighted small-world models should
help us gain insight in the navigation and other relevant phe-
nomena in various artificial and natural networks, and help
us design networks with higher efficiency.
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